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This paper gives a general solution of the second boundary-value
problem of heat and moisture transfer for bodies of the type of an
infinite wall and infinite cylinder on the basis of Luikov's generalized
system of equations [1].

The main equations and boundary conditions of the
problem are formulated in the following way.
The system of differential equations,
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. To solve the problem we use the finite integral trans-
form [2]
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with the inversion formula
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We have a system of ordinary differential equations
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with initial conditions
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We apply the Laplace transform to (6) and (7)
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where
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_ By standard methods [3] we find the originals T and
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where sy, is the root of the cubic equation
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We determine the roots of ghe cubic equation (8).
We rewrite this equation as
as® - bs®>+¢es-+d=0. .
Here
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We introduce
2g = 2b%27a% — bc/3a2 - d/a,
= (3ac — b?)/30%
We can infer that for several structural materials,

such as concrete, g >0, h < 0, and the discriminant
D=g?+hé<o,
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Then, as we know from [4],
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where cos ¢ = g/r°; r = +V|h|; the sign of r is the
same as the sign of g.
Obviously

cos (60° + 9/3) < 12, r=V|c/3a— B¥/9a% < b/3a.

Hence
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But [4)
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Whence
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Formulas (9) with due regard to the temporarily
introduced symbols give three real different and ne-
gative roots s, of the third-degree equation (8).

Thus, the final solution of the problem posed has
the form
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The symbols introduced here are obvious from the
foregoing.

We particularize the obtained solutions.

1. Plate

(i=0, E=zx R =0,

The eigenfunction of the problem is

s =R =1L).

W, (v, x/R) = cosw, x/R.
The characteristic equation is
sinw,=0, w,=nxn, (=12, .., o)
The function
W, (0, x/R) = sin », x/R.

The integral
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2. Hollow cylinder

(i=1, £=r, Ryis the radius of the internal
surface, Ry is the radius of the external sur-
face, L = Ry).

The eigenfunction of the problem is
W (@n 1/R) =Y (@) Jo (0, 7/Ry) —J1 (0} Y (0, 7/Ry).
The characteristic equation is
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where
k = Ry/R;.
The function
Wi(w,7/R) = Y1 (@) Iy (@ 1/Ry) — I (@) Vi (wn 1/Ry).

The integral
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3. Solid cylinder
(i=1 t¢=r, Ri=0, R,=R=1L).
The eigenfunction of the problem is

W, (0, 7/R) = J (o, /R).
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The characteristic equation is
Ji(w,)=0.
The function
W,(o,r/Ry = J, (0, 1/R).

The integral

R r
ng% (m,, __> dr =
p R

The second boundary-value problem of heat and
moisture transfer with 1., = 0 has been solved for a
solid cylinder and sphere by Prudnikov [5] and for a
hollow cylinder by Plyat [6].
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NOTATION

T is the temperature; U is the moisture content;
7 is the time; £ is the coordinate; a is the thermal
diffusivity; c is the specific heat; v, is the density of
absolutely dry body; @, is the coefficient of moisture
diffusion in body; p is the specific heat of phase trans-
ition; e is the phase transition number; 6 is the ther-
mogradient coefficient, equal to ratio of thermodif-
fusion coefficient to coefficient of moisture diffusion
in body; 7y is the moisture transfer relaxation period;
R; (j =1,2) is the coordinates of surfaces bounding
body; L is the characteristic dimension of body; my is
the rate of evaporation of moisture from surface; qj is
heat flux on surface; Wywy£/L) is the eigenfunction of
problem; wy is the root of characteristic equation;

2 Fe = epdjc; Wy (wn_E_) =

pi=anol /L% Lu= am/o; 7
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